442 research outputs found

    Proteolytic enzyme engineering : a tool for wool

    Get PDF
    One of the goals of protein engineering is to tailor the structure of enzymes to optimize industrial bioprocesses. In the present work, we present the construction of a novel high molecular weight subtilisin, based on the fusion of the DNA sequences coding for Bacillus subtilis prosubtilisin E and for an elastin-like polymer (ELP). The resulting fusion protein was biologically produced in Escherichia coli, purified and used for wool finishing assays. When compared to the commercial protease Esperase, the recombinant subtilisinE-VPAVG220 activity was restricted to the cuticle of wool, allowing a significant reduction of pilling, weight loss and tensile strength loss of wool fibers. Here we report, for the first time, the microbial production of a functionalized high molecular weight protease for controlled enzymatic hydrolysis of wool surface. This original process overcomes the unrestrained diffusion and extended fiber damage which are the major obstacles for the use of proteases for wool finishing applications

    Laughter and humor as complementary and alternative medicines for dementia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of dementia patients has increased worldwide, with an estimated 13.7 million dementia patients in the Asia Pacific region alone. This number is expected to increase to 64.6 million by the year 2050.</p> <p>Discussion</p> <p>As a result of advances in research, there several pharmacological therapies available for the treatment of dementia patients. However, current treatments do not suppress the disease process and cannot prevent dementia, and it will be some time before these goals are realized. In the meantime, complementary and alternative medicine (CAM) is an important aspect in the treatment of dementia patients to improve their quality of life throughout the long course of the disease. Considering the individuality of dementia patients, applicability of laughter and humor therapy is discussed. Even though there are many things that need to be elucidated regarding the mechanisms underlying the beneficial effects of laughter and humor, both may be good CAM for dementia patients if they are applied carefully and properly.</p> <p>Summary</p> <p>In this debate article, the physiological basis and actual application of laughter and humor in the treatment of dementia patients are presented for discussion on the applicability to dementia patients.</p

    Alkaloids, Diarylheptanoid and Naphthalene Carboxylic Acid Ester from Rhoiptelea chiliantha

    Get PDF
    Two pyrrolidine alkaloids (1, 2) were isolated from the fruits of Rhoiptelea chiliantha DIEL et HAND.-MAZZ. (Rhoipteleaceae). A diphenyl ether-type diarylheptanoid (3), and a naphthalene carboxylic acid methyl ester (4) which is biogenetically-related to juglone were isolated from the branches of the same plant. Their chemical structures were elucidated on the basis of spectroscopic analysis and chemical evidence

    Hydrolysis of the Leu-Gly bond of phenylazobenzyl-oxycarbonyl- l -Pro- l -Leu-Gly- l -Pro- D -Arg (a substrate of microbial collagenases) by treponemes isolated from the subgingival plaque of periodontitis patients

    Full text link
    Cell extracts prepared from several oral treponemes isolated from the subgingival plaque of periodontitis patients showed high enzyme activity toward phenylazobenzyl-oxycarbonyl- l -prolyl- l -leucylglycyl- l -prolyl- d -arginine (a compound used as a substrate for microbial collagenases). One major enzyme hydrolyzing this substrate at the Leu-Gly bond only was partially purified from an unspeciated treponeme (strain US), Treponema denticola ATCC 35405, and 29 different clinical isolates of T. denticola . The Treponema US enzyme also hydrolyzed furylacryloyl- l -leucylglycyl- l -prolyl- l -alanine (another substrate of bacterial collagenases) at the Leu-Gly bond. This enzyme also hydrolyzed various collagens and collagen-derived peptides. These treponemal proteases were sensitive to metal chelators and p -chloromercury compounds. The results indicate that human oral treponemes contain enzymes that readily hydrolyze in chromogenic protease substrates the Leu-Gly bond only that is the cleavage site of these substrates also by “true” microbial collagenases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41336/1/284_2005_Article_BF02094028.pd

    VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    Get PDF
    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF
    corecore